a 1 + 2 + 3 + n = 210 c. 1 + 3 + 5 + + (2n – 1 ) = 900 b. 2 + 4 + 6 + 2n = 650 8. Tentukan jumlah semua bilangan bulat yang : a. Terletak antara 10 dan 40 yang habis dibagi 3 b. Terletak antara 100 dan 500 yang habis dibagi 6 c. Terletak antara 1 dan 150 yang habis dibagi 3 tetapi tidak habis dibagi 5 B. Barisan dan Deret Geometri
Mari kita membuktikan menggunakan induksi matematika! D Soal Buktikan dengan induksi matematika bahwa $n^3 - n$ habis dibagi $3$ untuk setiap bilangan asli $n$. Pembahasan Ingat ya yang dimaksud dengan bilangan asli itu disimbolkan dengan $\mathbb{N}$ adalah $1,2,3,4,5$,.., dst. Untuk membuktikan bahwa $n^3 - n$ habis dibagi $3$ untuk setiap bilangan asli $n$ dengan metode induksi matematika, kita harus melakukan 3 langkah berikut. Langkah Pembuktian ke-1 Buktikan Berlaku untuk $n = 1$. Pada langkah ini, kita harus membuktikan bahwa $n^3 - n$ habis dibagi $3$ untuk $n= 1$. Caranya? Ya, substitusikan saja $n=1$ ke $n^3-n$. Kita akan memperoleh $\begin{split} n^3 - n &= 1^3 - 1 \\ &= 1 - 1 \\ &= 0 \end{split}$ Jelas sekali ya bahwa $0$ itu kan habis dibagi dengan $3$. Jadi, pada langkah ke-1 ini kita sudah berhasil membuktikan bahwa $n^3 - n$ habis dibagi $3$ untuk $n= 1$. Mari kita berbahagia sebentar. Hahaha. D Untuk membuktikan bahwa $n^3 - n$ habis dibagi $3$ untuk $n=2,3,4,5,6...$ dst ya... silakan simak kelanjutan pembuktian di bawah! D Langkah Pembuktian ke-2 Diasumsikan Berlaku untuk suatu $n = p$. Pada langkah ini, kita mengasumsikan bahwa $n^3 - n$ habis dibagi $3$ untuk suatu bilangan asli $n$ yang bernilai $p$. Dengan kata lain, terdapat suatu bilangan asli $p$, sedemikian sehingga $p^3 - p$ habis dibagi $3$. Ingat ya! Ini baru asumsi lho! Asumsi itu adalah sesuatu yang diyakini kebenarannya, tapi belum terbukti benar. Intermeso Selingan Proses Pembuktian Progress kita sejauh ini Kita berhasil membuktikan bahwa $n^3 - n$ habis dibagi $3$ untuk nilai $n = 1$. Kita mengasumsikan bahwa $n^3 - n$ habis dibagi $3$ untuk suatu nilai $n=p$. Pada intemeso alias selingan proses pembuktian ini, kita akan mengulik sedikit perihal bentuk $n^3 -n$. Perhatikan bahwa $n^3-n$ itu kan bisa difaktorkan. Ya toh? D Nah, jika $n^3 -n$ difaktorkan, akan diperoleh $n^3 - n = n-1\cdotn\cdotn+1$ Perhatikan bahwa untuk sebarang bilangan asli $n$, akan berlaku $n \neq n-1$. Ya toh? Untuk sebarang bilangan asli $n$, kita juga dapat menyatakan bahwa $n \neq n+1$. Ya toh? Jadi, kita dapat menyimpulkan bahwa $n$, $n-1$, dan $n+1$ adalah $3$ bilangan asli yang berbeda. Ya tidak? D Dari sifat-sifat di atas, kita dapat menyatakan suatu sifat baru ini. Jika bilangan $n$, $n-1$, dan $n+1$ kita kalikan, kemudian terdapat suatu bilangan asli $x$ yang membagi habis hasil perkalian $3$ bilangan tersebut, maka salah satu dari $n$, $n-1$, atau $n+1$ pastilah kelipatan $x$. Kita akan menggunakan sifat di atas pada Langkah Pembuktian ke-3. Intermeso selesai sampai di sini. Mari, sekarang kita kembali ke langkah utama pembuktian. Langkah Pembuktian ke-3 Buktikan Berlaku untuk $n = p + 1$. Pada langkah ini, kita harus membuktikan bahwa $n^3 - n$ habis dibagi $3$ untuk $n = p + 1$. Sebelumnya, ingat bahwa pada bagian Intermeso, kita dapat memfaktorkan $n^3 - n$ menjadi $n-1\cdotn\cdotn+1$. Dengan demikian, dengan mensubstitusikan $n=p+1$ ke $n-1\cdotn\cdotn+1$, kita akan memperoleh $\begin{split} n^3 - n &=n-1\cdotn\cdotn+1 \\ &= p+1 - 1\cdotp+1\cdotp+1+1\\ &= p\cdotp+1\cdotp+2 \\ \end{split}$ Jadi, membuktikan bahwa $n^3 - n$ habis dibagi $3$ untuk $n = p + 1$ ekuivalen dengan membuktikan bahwa $p\cdotp+1\cdotp+2$ habis dibagi $3$. *** Selanjutnya, bagaimanakah cara membuktikan bahwa $p\cdotp+1\cdotp+2$ habis dibagi $3$? Ingat! Pada Langkah Pembuktian ke-2, kita mengasumsikan bahwa $p^3 - p$ habis dibagi $3$. Karena $p^3 - p$ dapat difaktorkan menjadi $p-1\cdotp\cdotp+1$, maka asumsi bahwa $p^3 - p$ habis dibagi $3$ akan ekuivalen dengan asumsi bahwa $p-1\cdotp\cdotp+1$ habis dibagi $3$. Perhatikan bahwa $p$, $p-1$, dan $p+1$ adalah tiga bilangan asli yang berbeda. Oleh sebab itu, karena asumsi $p-1\cdotp\cdotp+1$ habis dibagi $3$, menurut sifat di dalam kotak biru di bagian Intermeso, kita dapat menyimpulkan bahwa Salah satu dari $p$, $p-1$, atau $p+1$ adalah kelipatan $3$. Bisa jadi, $p$ adalah kelipatan $3$. Bisa jadi, $p-1$ adalah kelipatan $3$. Bisa jadi, $p+1$ adalah kelipatan $3$. Pokoknya, salah satu dari $p$, $p-1$, atau $p+1$ adalah kelipatan $3$. Mari kita cermati tiga kemungkinan tersebut satu per satu. *** Kemungkinan Pertama $p$ adalah kelipatan $3$. Pada kemungkinan ini, $p$ adalah bilangan asli kelipatan $3$. Ingat! Misi utama kita pada Langkah Pembuktian ke-3 ini adalah membuktikan bahwa $p\cdotp+1\cdotp+2$ habis dibagi dengan $3$. Perhatikan! Karena $p$ adalah salah satu faktor dari $p\cdotp+1\cdotp+2$, maka dapat kita simpulkan bahwa $p\cdotp+1\cdotp+2$ merupakan bilangan asli kelipatan $3$. Dengan kata lain, $p\cdotp+1\cdotp+2$ habis dibagi $3$. Jadi, jika $p$ merupakan bilangan asli kelipatan $3$, maka $p\cdotp+1\cdotp+2$ akan habis dibagi $3$. Kemungkinan Kedua $p-1$ adalah kelipatan $3$. Pada kemungkinan ini, $p-1$ adalah bilangan asli kelipatan $3$. Oleh sebab itu, $p-1 + 3 = p+2$ juga merupakan bilangan asli kelipatan $3$ dong? Ingat! Misi utama kita pada Langkah Pembuktian ke-3 ini adalah membuktikan bahwa $p\cdotp+1\cdotp+2$ habis dibagi dengan $3$. Perhatikan! Karena $p+2$ adalah salah satu faktor dari $p\cdotp+1\cdotp+2$, maka dapat kita simpulkan bahwa $p\cdotp+1\cdotp+2$ merupakan bilangan asli kelipatan $3$. Dengan kata lain, $p\cdotp+1\cdotp+2$ habis dibagi $3$. Jadi, jika $p-1$ merupakan bilangan asli kelipatan $3$, maka $p\cdotp+1\cdotp+2$ akan habis dibagi $3$. Kemungkinan Ketiga $p+1$ adalah kelipatan $3$. Pada kemungkinan ini, $p+1$ adalah bilangan asli kelipatan $3$. Ingat! Misi utama kita pada Langkah Pembuktian ke-3 ini adalah membuktikan bahwa $p\cdotp+1\cdotp+2$ habis dibagi dengan $3$. Perhatikan! Karena $p+1$ adalah salah satu faktor dari $p\cdotp+1\cdotp+2$, maka dapat kita simpulkan bahwa $p\cdotp+1\cdotp+2$ merupakan bilangan asli kelipatan $3$. Dengan kata lain, $p\cdotp+1\cdotp+2$ habis dibagi $3$. Jadi, jika $p+1$ merupakan bilangan asli kelipatan $3$, maka $p\cdotp+1\cdotp+2$ akan habis dibagi $3$. *** Dari pembuktian panjang di atas, kita dapat menyimpulkan bahwa Jika $p$ adalah kelipatan $3$, maka $p\cdotp+1\cdotp+2$ akan habis dibagi dengan $3$. Jika $p-1$ adalah kelipatan $3$, maka $p\cdotp+1\cdotp+2$ akan habis dibagi dengan $3$. Jika $p+1$ adalah kelipatan $3$, maka $p\cdotp+1\cdotp+2$ akan habis dibagi dengan $3$. Dengan kata lain Berdasarkan asumsi bahwa $p-1\cdotp\cdotp+1$ habis dibagi dengan $3$, akan berlaku benar bahwa $p\cdotp+1\cdotp+2$ akan habis dibagi dengan $3$. Pernyataan di atas ekuivalen dengan Berdasarkan asumsi bahwa $p^3 - p$ habis dibagi dengan $3$, akan berlaku benar bahwa $p+1^3 - p+1$ akan habis dibagi dengan $3$. Kesimpulan Berdasarkan Langkah Pembuktian ke-1 hingga ke-3, kita dapat menyimpulkan benar bahwa $n^3 - n$ habis dibagi $3$ untuk setiap bilangan asli $n$.
3. Tentukan banyaknya bilangan yang habis dibagi 2 atau 3, tetapi tidak habis dibagi 5 pada range bilangan [1..100] Jawaban: Misal A adalah bilangan yang habis dibagi 2. Maka: |A| = 100 2 |A| = 50 Misal B adalah bilangan yang habis dibagi 3. Maka: |B| = ⌊ 100 3 ⌋ |B| = 33 Misal C adalah bilangan yang habis dibagi 5. Maka: |C| = 100 5 |C| = 20 Jawaban4n - 1 tidak habis dibagi oleh 3Penjelasan dengan langkah-langkah4n - 1 = 3n + n-1artinya 4n - 1 tidak habis dibagi oleh 3, hanya n trtentu saja.
Karenam n habis dibagi p sedangkan p tidak habis dibagi 2 atau 5 maka bilangan 123456789 yang terdiri dari 9(a b) angka akan habis dibagi p < 100. Jadi, 123456789123456789123456789 akan habis dibagi oleh semua n < 100 dengan n tidak habis dibagi 2 atau 5. Banyaknya bilangan yang habis dibagi 2 atau 5 = ὦ99 2 ὧ+ὦ99 5 ὧ−ὦ99 10
Bilangan Habis dibagi Konsep pembagian akan selalu menyertakan antara bilangan yang dibagi dan pembagi. Ada dua kemungkinan yang akan terjadi ketika bilangan yang dibagi dan pembagi dioperasikan yaitu bilangan yang dibagi akan habis dibagi dan kemungkinan kedua bilangan yang dibagi akan memiliki sisa hasil pembagian. Untuk pembahasan kita kali ini kita akan fokus membahas mengenai bilangan yang habis dibagi. Apakah yang dimaksud dengan bilangan yang habis dibagi?. Bilangan yang habis dibagi maksudnya bilangan yang tidak memiliki sisa jika dibagi dengan suatu bilangan. Maksudnya bagaimana ?. hehe… sebenarnya sudah jelas tadi ya. Tapi baiklah akan saya jelaskan lagi. Apa sih maksudnya. Biasanya saat kita membagi terutama yang bagi kurung, kita selalu menuliskan hasil baginya di atas bagi kurungnya, setelah itu kita kalikan. Hasil perkalian antara hasil dan pembagi kita taruh di bawah bilangan pokok yang dibagi. Kemudian kita kurangi. Saat mengurangi ini, jika pengurangannya bernilai nol maka pembagi itu dikatakann bisa membagi habis bilangan tersebut. Inilah yang disebut habis dibagi yaitu tidak bersisa. Bagaimana cirri – cirri dan karakter bilangan yang habis dibagi?. Karakter dari suatu bilangan yang habis dibagi itu tergantung dari pembaginya teman – teman. Berikut saya akan uraikan beberapa bilangan pembagi yang berpengaruh terhadap hasil bagi. Ciri dan karakter bilangan yang habis dibagi 2 Pada prinsipnya semua bilangan bisa dibagi dua. Tetapi untuk bilangan yang habis dibagi dua itu memiliki ciri – ciri angka satuannya 0, 2 , 4, 6, dan 8 dalam artian semua bilangan yang satuannya angka nol dan angka genap maka bilangan itu akan habis dibagi dua. Contoh 346 akan habis dibagi 2 karena angka satuannya 6. Kalau tidak percaya silahkan kita bagi 346 2 = 173 sisa 0. Sisa nol inilah yang kita sebut dengan habis dibagi. 1234567897890 habis dibagi 2 karena satuannya adalah angka nol. Ciri dan Karakter bilangan yang habis dibagi 3 Untuk bilangan yang habis dibagi 3, dia memiliki ciri dan karakteristik sebagai berikut jumlah semua digitnya habis dibagi tiga. Maksudnya bagaimana?. Maksudnya dalam suatu bilangan itu berapa ada angka itu kita jumlahkan semuanya, jika hasilnya bisa dibagi tiga, maka bilangan itu dikatakan bisa dibagi tiga. Kalau masih bingung kita langsung saja lihat contohnya. Contoh 1 Apakah 135 habis dibagi 3 ?. Jawab Untuk menentukan bilangan habis dibagi 3 tiga, terlebih dahulu kita harus jumlahkan semua digitnya. Kemudian kita cek apakah hasil ini bisa kita bagi dengan tiga. Jika hasil ini bisa kita bagi dengan tiga maka bilangan 135 bisa dibagi dengan 3 tiga. 1 + 3 + 5 = 9 Kita tahu 9 habis dibagi 3 tiga, maka 135 habis dibagi 3. Contoh 2 Apakah 24612321 bisa dibagi dengan 3 ?. Jawab Sama seperti contoh di atas, kita jumlahkan semua digit dalam bilangan itu. 2 + 4 + 6 + 1 + 2 + 3 + 2 + 1 = 21. Dan kita tahu bilangan 21 habis dibagi 3 tiga . Maka 24612321 habis dibagi 3. Contoh 3 Diketahui 2a351 adalah bilangan yang habis dibagi 3. Tentukanlah kemungkinan nilai a !. Jawab Bilangan dalam soal merupakan bilangan yang habis dibagi 3. Maka 2a351 = 2 + a + 3 + 5 + 1 = 11 + a 11 + a juga merupakan bilangan yang habis tiga. Kita cari bilangan di atas 11 yang bisa dibagi 3. Yaitu 12, 15, 18, 21, … Untuk bilangan 12, 11 + a = 12, berarti a = 1 Untuk bilangan 15 11 + a = 15, berarti a = 4 Untuk bilangan 18, 11 + a = 18, maka nilai a = 7 Untuk bilangan 21, 11 + a = 21, a = 10 tidak mungkin Berarti kemungkinan nilai a = 1, 4, dan 7. Dan bilangan yang dimaksud dalam soal adalah 21351, 24351, dan 27351. Gimana teman – teman, ga masalah kan dengan bilangan yang habis dibagi 3 tiga ?. Kalau tidak, kita langsung ke bilangan yang habis dibagi 4. Ciri dan Karakteristik bilangan yang habis dibagi 4 Ciri – ciri suatu bilangan yang habis dibagi dengan angka 4 adalah dua angka terakhirnya habis dibagi dengan 4 empat . Contoh Apakah 234564 habis dibagi dengan 4 ?. Jawab Kita cek dua angka terakhir pada bilangan di atas yaitu 64. Kita tahu 64 habis dibagi 4. Maka 234564 juga habis dibagi 4. Ciri – ciri bilangan yang habis dibagi dengan 5 Ciri – ciri suatu bilangan yang habis dibagi dengan 5 yaitu angka terakhir bilangan itu adalah angka nol dan lima. Contoh Apakah 4567897680 habis dibagi 5 ?. jawabnya ya. Karena angka satuan bilangan itu adalah nol. Ciri – ciri bilangan yang habis dibagi 6 Ciri – ciri suatu bilangan yang habis dibagi 6 enam adalah bilangan tersebut adalah bilangan genap kemudian penjumlahan dari semua digitnya habis dibagi 3 tiga . Maksudnya bagaimana ?. pertama, kita pastikan dulu bilangan yang akan kita cek apakah sudah bilangan genap. Jika bilangan yang kita cek adalah bilangan genap, selanjutnya kita jumlahkan semua digitnya, apakah bisa habis dibagi 3. Contoh Apakah 2736 habis dibagi 6 ?. Jawab Pertama kita perhatikan bilangan 2736 merupakan bilangan genap. Setelah itu kita jumlahkan semua digitnya 2 + 7 + 3 + 6 = 18. Kita tahu 18 habis dibagi 3. Maka 2736 habis dibagi 6. Ciri – ciri bilangan yang habis dibagi 7 Untuk mengenali suatu bilangan habis dibagi 7 yaitu satuan dari bilangan tersebut kita kalikan dua. Kemudian kita pakai untuk mengurangi angka sebelumnya. Jika hasil pengurangan ini bisa dibagi 7 maka bilangan tersebut habis dibagi 7. Contoh Apakah 8638 habis dibagi 7 ?. Jawab Pertama kita kalikan satuannya dengan angka 2 dua yaitu 2 x 8 = 16. Kemudian ini dipakai untuk mengurangi angka sebelumnya 863 – 16 = 847 Karena 847 masih besar juga, kita ambil lagi satuannya untuk dikali 2. Sehingga 2 x 7 = 14. Angka sebelumnya kita kurangi dengan 14. 84 – 14 = 70. Terlihat bahwa 70 habis dibagi dengan 7. Maka bisa disimpulkan bahwa 8638 habis dibagi 7. Ciri suatu bilangan yang habis dibagi 8 Ciri – ciri suatu bilangan yang habis dibagi 8 adalah tiga digit terakhirnya bisa dibagi dengan 8 delapan. Contoh 1 Apakah 3648 habis dibagi 8?. Jawab Kita lihat tiga digit terakhir bilangan itu. Yaitu 648. Kita tahu 648 bisa dibagi 8. Maka 3648 habis dibagi 8. Contoh 2 Apakah 12345786256 habis dibagi 8 ?. Jawab Kita lihat digit terakhir bilangan itu yaitu 256. Kita tahu 256 habis dibagi 8. Maka bilangan 12345786256 pun habis dibagi 8. Ciri bilangan yang habis dibagi 9 Cirri-cirinya adalah jumlah semua digit bilangan itu habis dibagi 9. Contoh Apakah 2341341 habis dibagi 9 ? Jawab Kita jumlahkan semua digitnya 2 + 3 + 4 + 1 + 3 + 4 + 1 = 18. Kita tahu 18 habis dibagi 9. Maka bilangan 2341341 habis dibagi 9. Demikian pembahasan saya tentang ciri-ciri suatu bilangan yang habis dibagi. Semoga bermanfaat. Dan untuk latihan, silahkan teman – teman kerjakan soal-soal berikut Apakah 7896546784 habis dibagi 2 ?. jelaskan Apakah 352198767 habis dibagi 3 ? Apakah 740736 habis dibagi 6 ?. jelaskan ! Apakah 319286415 habis dibagi 7 ?. jelaskan ! Diketahui 23b42b1 adalah bilangan yang habis dibagi 3. Tentukanlah kemungkinan nilai b yang mungkin !.
Jawaban terverifikasi. Jawaban : benar bahwa 3^ (4n)-1 habis dibagi 80 , untuk setiap n bilangan asli. Langkah-langkah pembuktian dengan induksi matematika 1) Buktikan benar untuk n = 1 2) Asumsikan benar untuk n = k , buktikan benar untuk n = k + 1 3^ (4n)-1 habis dibagi 80 , untuk setiap n bilangan asli Untuk n = 1 3^ (4.1) - 1 = 3⁴ - 1
Prinsip Induksi Matematika Misalkan merupakan suatu pernyataan untuk setiap bilangan asli . Pernyataan benar jika memenuhi langkah berikut. 1. Langkah awal Dibuktikan benar. 2. Langkah induksi Jika diasumsikan benar, maka harus dibuktikan bahwa juga benar, untuk setiap bilangan asli. Jika langkah 1 dan 2 sudah diuji kebenarannya, maka ditarik kesimpulan bahwa benar untuk setiap bilangan asli . Asumsi soal akan dibuktikan bahwa habis dibagi untuk semua bilangan asli . Langkah awal Akan dibuktikan benar. Untuk diperoleh Jadi, terbukti benar bahwa habis dibagi Langkah induksi diasumsikan benar untuk sehingga habis dibagi . Selanjutnya, akan dibuktikan bahwa habis dibagi juga benar. Karena habis dibagi , maka dapat kita misalkan , untuk bilangan bulat positif. Jadi, terbukti bahwa habis dibagi . Pernyataan memenuhi kedua prinsip induksi matematika. Dengan demikian, berdasarkan prinsip induksi matematika, benar untuk setiap bilangan asli. Dari Diagram Venn di atas, banyak bilangan dari 1 sampai 1000 yang habis dibagi 3 atau 5 tetapi tidak habis dibagi oleh 7 didefinisikan sebagai (A ∪ B ∪ C) – C atau yang diarsir merah pada Diagram Venn.
1. Induksi Matematika pada Pembuktian Rumus Dalam kehidupan sehari hari, kita sering mengambil suatu kesimpulan berdasarkan data-data yang sudah ada. Kesimpulan tersebut belum valid, karena masih bersifat dugaan hipotesa Kesimpulan akan lebih valid jika hipotesa tersebut diuji berdasarkan fakta yang sudah ada. Cara seperti ini merupakan inti dari prinsip induksi Langkah langkah pembuktian rumus dengan induksi matematika 1 Langkah mengambil data base case - Ambil beberapa data n = 1, 2, 3, … - Tetapkan kesimpulan sementara /hipotesa rumus dianggap benar untuk n= k 2 Langkah menguji hipotesa inductive step - Rumus diuji dengan pengambilan n = k + 1 Atau Rumus diuji dengan rumus lain yang sudah valid Untuk lebih jelasnya ikutilah contoh soal berikut ini 01. Dengan induksi matematika buktikanlah bahwa 72n+1 +1 habis dibagi 8 untuk n bilangan asli Jawab 2. Dengan induksi matematika buktikanlah bahwa nn + 1n + 2 habis dibagi 3 untuk n bilangan asli Jawab Untuk n = 1, diperoleh 11 + 11 + 2 = 6 habis dibagi 3 terbukti Untuk n = 2, diperoleh 22 + 12 + 2 = 24 habis dibagi 3 terbukti Untuk n = 3, diperoleh 33 + 13 + 2 = 60 habis dibagi 3 terbukti Dari data diatas anggap bahwa rumus benar untuk n = k, artinya kk + 1k + 2 habis dibagi 3 hipotesa Akan dibuktikan bahwa rumus juga benar untuk n = k + 1, artinya [k+1] [k+1] + 1 [k+1] + 2 juga habis dibagi 3 Tinjau [k+1] [k+1] + 1 [k+1] + 2 = k+1k+2k+3 = k+1k+2k + k+1k+23 Karena k+1k+2k habis dibagi 3 menurut hipotesa dan k+1k+23 juga habis dibagi 3 maka 81k+1k+2k + k+1k+23 habis dibagi 3 Sehingga [k+1] [k+1] + 1 [k+1] + 2 habis diabgi 3 Jadi terbukti bahwa nn + 1n + 2 habis dibagi 3 untuk n bilangan asli 08. Buktikanlah bahwa untuk n ≥ 4 dan n bilangan asli berlaku 3n > n3 Jawab Ambil n = 4 maka 34 > 43 artinya 81 > 64 bernilai benar Ambil n = 5 maka 35 > 53 artinya 243 > 125 bernilai benar Ambil n = 6 maka 36 > 63 artinya 729 > 216 bernilai benar Disimpulkan sementara hipotesis, bahwa Untuk n = k maka 3k > k3 untuk setiap k bilangan asli dan k ≥ 4 Akan dibuktikan bahwa Untuk n = k + 1 maka 3k+1 > k+13 2. Induksi Matematika pada Pembuktian Rumus Langkah-langkah pembuktian 1 Tunjukkan bahwa rumus Sn benar untuk n = 1, 2, 3 2 Anggap bahwa rumus Sn benar untuk n = k 3 Akan dibuktikan bahwa rumus Sn benar untuk n = k + 1 Untuk lebih jelasnya ikutilah contoh soal berikut ini 01. Dengan induksi matematika buktikanlah rumus 3 + 7 + 11 + 15 + … + 4n – 1 = n2n + 1 Jawab Untuk n = 1, diperoleh 3 = 12[1] + 1 = 3 terbukti Untuk n = 2, diperoleh 3 + 7 = 22[2] + 1 = 10 terbukti Untuk n = 3, diperoleh 3 + 7 + 11 = 32[3] + 1 = 21 terbukti Dari data diatas anggap bahwa rumus benar untuk n = k, artinya 3 + 7 + 11 + 15 + … + 4k – 1 = k2k + 1 adalah benar hipotesa Akan dibuktikan bahwa rumus juga benar untuk n = k + 1, artinya 3 + 7 + 11 + 15 + … + 4k – 1 + 4[k+1] – 1 = [k+1]2[k+1] + 1 Bukti Ruas Kiri = 3 + 7 + 11 + 15 + … + 4k – 1 + 4[k+1] – 1 = k2k + 1 + 4[k+1] – 1 = 2k2 + k + 4k + 4 – 1 = 2k2 + 5k + 3 = k + 12k + 3 = k + 12k + 2 + 1 = k + 12[k+1] + 1 = Ruas Kanan terbukti Jadi terbukti rumus 3 + 7 + 11 + 15 + … + 4n – 1 = n2n + 1 02. Dengan induksi matematika buktikanlah bahwa 03. Dengan induksi matematika buktikanlah bahwa
. 412 70 124 153 13 108 216 223

4n 1 habis dibagi 3